Tetrahedron Letters 50 (2009) 676-679

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A convenient synthesis of pseudoglycosides via a Ferrier-type rearrangement using metal-free H₃PO₄ catalyst

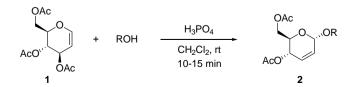
Bala Kishan Gorityala, Shuting Cai, Rujee Lorpitthaya, Jimei Ma, Kalyan Kumar Pasunooti, Xue-Wei Liu*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

ARTICLE INFO	A B S T R A C T		
Article history:	A mild and efficient synthesis of pseudoglycals has been develop		
Received 17 October 2008	Phosphoric acid proved to be an excellent catalyst for conversio		

Received 17 October 2008 Revised 20 November 2008 Accepted 25 November 2008 Available online 30 November 2008 A mild and efficient synthesis of pseudoglycals has been developed using a metal-free catalytic system. Phosphoric acid proved to be an excellent catalyst for conversion of 2,4,6-tri-O-acetyl-p-glycal to 2,3-unsaturated O-glycosides. A wide range of alcohols including naturally bioactive compounds could be coupled with the glycal to give the desired products in good to excellent yields and with high levels of α -selectivity.

© 2008 Elsevier Ltd. All rights reserved.


2,3-Unsaturated *O*-glycosides have been recognized as important building blocks in many bioactive molecules¹ and play a substantial role in the synthesis of compounds such as oligosaccharides,² uronic acids,³ biologically active natural products,⁴ and antibiotics.⁵ Since the Ferrier rearrangement was discovered in 1964,⁶ there have been many reports on the development of this direct method to 2,3-unsaturated glycosides. The Ferrier reaction typically involves the allylic rearrangement of glycals with nucleophilic substitution under acidic conditions.⁷ This rearrangement is believed to proceed through a cyclic allylic oxocarbonium intermediate that is formed via displacement of the C-3 substituent in a glycal, followed by preferential attack of a nucleophile via the quasi-equatorial orientation.⁸

A pioneering study with BF₃·Et₂O⁹ led to a number of other Lewis acids being used in these reactions. The use of Lewis acids, such as SnCl₄,¹⁰ InCl₃,¹¹ Yb(OTf)₃,¹² FeCl₃,¹³ LiBF₄,¹⁴ BiCl₃,¹⁵ ZnCl₂,¹⁶ Dy(OTf)₃,¹⁷ Sc(OTf)₃,¹⁸ and ZrCl₄,¹⁹ has contributed to the advancement of the acid-catalyzed allylic rearrangement of glycal derivatives. However, each catalyst suffers from drawbacks such as low yields, formation of side products, and cost and amount of catalyst. With the objective of developing a viable procedure for the synthesis of 2,3-unsaturated glycosides, we focused on finding a cheap and efficient catalyst that would give high anomeric selectivity and yields. To our best knowledge, phosphoric acid (H₃PO₄) has not been used as a catalyst in this area. H₃PO₄ is used as a catalyst in many reactions, for example, Diels-Alder²⁰ and oligomerization,²¹ and also as a benchmark for other phosphoric acid catalysts.²² The widespread use of H₃PO₄ as a catalyst can be attributed to the fact that it is cheap and easily available. In the present study, we describe the successful implementation of phosphoric acid (H₃PO₄) as a catalyst in the Ferrier rearrangement for the synthesis of 2,3-unsaturated O-glycosides (Scheme 1).

Regarding atom economy, it is crucial to use a low amount of the catalyst. We found that H_3PO_4 could be loaded as low as 0.2 equiv with respect to the starting material. There was no dramatic increase in yield and selectivity, when the amount of H_3PO_4 was increased. Typically, H_3PO_4 was added to the mixture of glycal and alcohol (1 equiv) in dichloromethane at room temperature. When the reaction was complete, the solvent was evaporated, and subsequent purification of the crude product by shortcolumn chromatography gave the desired pseudoglycosides. The structure and stereochemistry of the glycosylated products were elucidated from ¹H, ¹³C, and 2D NMR spectroscopic data. The results reported in Table 1 show that a variety of alcohols could be utilized and gave the desired 2,3-unsaturated glycosides (**2a–p**) in excellent yields (82–97%). Moreover, the reaction conditions are very mild and rapid, and no side products were formed.

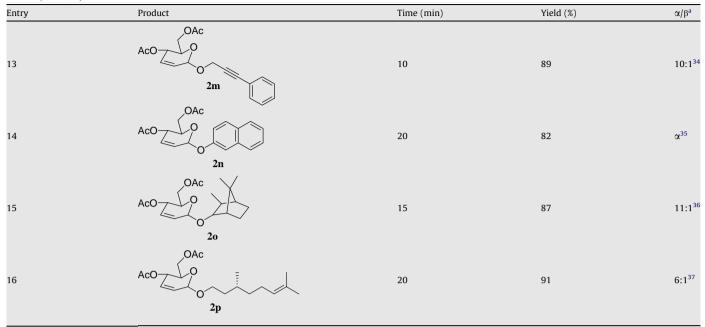
Based on the anomeric ratios obtained from ¹H NMR spectra, it is evident that the catalytic reactions using allyl alcohol, pentan-3ol, and 2-naphthol as nucleophiles produced α -anomers as the sole products (Table 1, entries 6, 7, and 14). The bulky and long carbon chain nucleophiles were able to give good selectivities (up to 20:1 α/β ratio). Apart from these, anomeric mixtures were formed with the α -anomer being formed predominantly (at least 5:1).

Encouraged by these results, we next explored the scope of this route for the synthesis of pseudoglycals connected to various biologically important natural products (Table 1, entries 15 and 16).

Scheme 1. A synthetic model for the ferrier rearrangement.

^{*} Corresponding author. Tel.: +65 6316 8901; fax: +65 6791 1961. E-mail address: xuewei@ntu.edu.sg (X.-W. Liu).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.11.103


Table 1

Ferrier reaction of 2,3-tri-O-acetyl-D-glycal with alcohols in the presence of the H₃PO₄

Entry	Product	Time (min)	Yield (%)	α/β^a
1	AcO CAC	10	93	8:1 ²⁶
2	$AcO \xrightarrow{OAc} O O O O \to O O O O O \to O O O O O O O O $	10	88	10:1
3	$AcO \xrightarrow{OAc} Br$	15	89	8:1 ²⁷
4	AcO C C C C C C C C C C C C C C C C C C C	15	85	5:1 ²⁸
5	AcO OAc	10	86	10:1 ²⁹
6	AcO CO 2f	10	92	α^{26}
7	AcO COAc	15	84	α^{31}
8	AcO OAc 2h	15	97	20:1 ³²
9		10	85	20:1 ²⁶
10		10	87	20:1 ³³
11		10	93	5:1
12		15	92	8:1 ³⁰

(continued on next page)

^d The α/β ratio was determined from the anomeric proton ratio in the 'H NMR spectra.

For example, borneol²³ and citronellol²⁴ glycosides are challenging targets to study and transform because of their diverse biological activities and their structural complexity. They are generally synthesized by enzymatic²⁵ as well as Koenigs-Knorr-Zemplen²³ methods, which are expensive, lengthy, and tedious procedures. Under our catalytic conditions, borneol and citronellol pseudoglycosides were obtained in 87% and 91% yields and in anomeric ratios of 11:1 and 6:1, respectively.

In summary, we have demonstrated a practical synthesis of 2,3unsaturated O-glycosides via the Ferrier rearrangement. H₃PO₄ is an effective and viable catalyst in the reaction with various alcohols to furnish many complex pseudoglycals. The simple workup, rapid reactions, low cost, and the commercial availability of the catalyst are significant advantages of this method.

Acknowledgments

We gratefully thank Nanyang Technological University and the Ministry of Education, Singapore for the financial support.

References and notes

- 1. (a) Fraser-Reid, B. Acc. Chem. Res. 1985, 18, 347; (b) Ferrier, R. J. Adv. Carbohydr. Chem. Biochem. 1969, 24, 199; (c) Toshima, K.; Tatsuda, K. Chem. Rev. 1993, 93, 1503; (d) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40, 1576; (e) Feher, M.; Schmidt, J. M. J. Chem. Inf. Comput. Sci. 2003, 43, 218; (f) Dorgan, B. J.; Jackson, R. F. W. Synlett 1996, 859; (g) Schmidt, R. R.; Angerbauer, R. Carbohydr. Res. 1981, 89, 159; (h) Schmidt, R. R.; Angerbauer, R. Carbohydr. Res. 1981, 89, 193; (i) Schmidt, R. R.; Angerbauer, R. Carbohydr. Res. 1979, 72, 272; (j) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35, 1380; (k) Liu, Z. J. Tetrahedron: Asymmetry 1999, 10, 2119.
- 2. Bussolo, V. D.; Kim, Y. J.; Gin, D. Y. J. Am. Chem. Soc. 1998, 120, 13515.
- (a) Schmidt, R. R.; Angerbauer, R. Carbohydr. Res. 1981, 89, 159; (b) Angerbauer, R.; Schmidt, R. R. Carbohydr. Res. 1981, 89, 193.
- Tolstikov, A. G.; Tolstikov, G. A. Russ. Chem. Rev. 1993, 62, 579.
- Williams, N. R.; Wander, J. D. In The Carbohydrates in Chemistry and 5. Biochemistry; Academic Press: New York, 1980.
- Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, 570.
- Ferrier, R. J. J. Chem. Soc., Perkin Trans. 1 1979, 1455.
- (a) Ferrier, R. J.; Sankey, G. H. J. Chem. Soc. C 1966, 2345; (b) Wieczorek, B.; 8. Thiem, J. J. Carbohydr. Chem. 1998, 17, 785; (c) Levy, D. E.; Tang, C. In The Chemistry of C-Glycosides; Pergamon Press: Tarrytown, NY, 1995; (d) Postema, M. H. D. In C-Glycosides Synthesis; CRC Press: Boca Raton, FL, 1995; (e) Csuk, R.; Shaade, M.; Krieger, C. Tetrahedron 1996, 52, 6397.

- 9. (a) Descotes, G.; Martin, J. C. Carbohydr. Res. 1977, 56, 168; (b) Klaffke, W.; Budlo, P.; Springer, D.; Thiem, J. L. Ann. Chem. **1991**, 6, 509.
 Bhate, P.; Harton, D.; Priebe, W. Carbohydr. Res. **1985**, 144, 331
- (a) Babu, B. S.; Balsubramanian, K. K. Tetrahedron Lett. 2000, 41, 1271; (b) Das, 11 S. K.; Reddy, K. A.; Roy, J. Synlett 2003, 1607.
- 12 Takhi, M.; Rahman, A.; Schmidt, R. R. Tetrahedron Lett. 2001, 42, 4053.
- 13. Masson, C.; Soto, J.; Besodes, M. Synlett 2000, 1281
- Yadav, J. S.; Reddy, B. V. S.; Chandraiah, L.; Reddy, K. S. Carbohydr. Res. 2001, 14. 332, 221.
- Swamy, N. R.; Venkateswarlu, A. Synthesis 2002, 598. 15
- Bettadaiah, B. K.; Srinivas, P. Tetrahedron Lett. 2003, 44, 7257. 16.
- Yadav, J. S.; Reddy, B. V.; Reddy, J. S. J. Chem. Soc., Perkin Trans. 1 2002, 2390. 17.
- Yadav, J. S.; Reddy, B. V.; Murthy, C. V.; Kumar, G. M. Synlett 2000, 1450. 18
- Smitha, G.; Reddy, S. C. Synthesis 2004, 834. 19.
- 20. Takagi, R.; Kondo, A.; Ohkata, K. J. Mol. Catal. A: Chem. 2007, 1, 120.
- Klerk, A. D.; Leckel, D. O.; Prinsloo, N. M. Ind. Eng. Chem. Res. 2006, 45, 6127. 21.
- Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909. 22.
- Mastalic, J.; Jerkovic, I.; Vinkovic, M.; Dzolic, Z.; Vikic-Topic, D. Croat. Chem. 23 Acta 2004, 77, 491
- Oka, N.; Ikegami, A.; Ohki, M.; Sakata, K.; Yagi, A.; Watanabe, N. Phytochemistry 24. 1998 47 1527
- Yamauchi, T.; Hara, M.; Mihashi, K. Phytochemistry 1972, 1, 3345. 25.
- Zhang, G.; Liu, Q.; Shi, L.; Wang, J. *Tetrahedron* **2008**, 64, 339. Ferrier, R. J.; Petersen, P. M. *Tetrahedron* **1990**, 46, 1. 26
- 27.
- 28. Surya Kiran, N.; Malla Reddy, S.; Srinivasulu, M.; Venkateswarlu, Y. Synth. Commun. 2008, 38, 170.
- 29. Yadav, J. S.; Subba Reddy, B. V.; Sunder Reddy, J. S. J. Chem. Soc., Perkin Trans. 1 2002 2390
- 30. Das, S. K.; Reddy, K. A.; Roy, J. Synlett 2003, 1607.
- Typical experimental procedure: To a mixture of 2,4,6-tri-O-acetyl-D-glycal 31. (100 mg, 0.37 mmol) and pentan-3-ol (1 equiv) in dichloromethane (1 ml) was added 0.2 equiv of phosphoric acid at room temperature. The mixture was stirred for the appropriate amount of time (Table 1, entry 7), and the extent of reaction was monitored by TLC analysis. The reaction mixture was then filtered and rinsed with dichloromethane. Evaporation of the solvent under reduced pressure, followed by purification of the residue by silica gel column chromatography, gave the desired 2,3-unsaturated glycoside (**2g**): $[\alpha]_{2}^{D4}$ +313.9 (c 0.2 CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.84 (d, J = 10.5 Hz, 1H), 5.80 (d, J = 10.5 Hz, 1H), 5.25 (dt, J = 9.3, 1.4 Hz, 1H), 5.09 (s, 1H), 4.20 (dd, J = 12.1, 5.7 Hz, 1H), 4.16–4.11 (m, 2H), 3.55 (pent, J = 5.9 Hz, 1H), 2.06 (s, 3H), 2.05 (s, 3H), 1.57–1.48 (m, 4H), 0.92 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H); NMR (75 MHz, CDCl₃) δ 170.8, 170.3, 128.7, 128.2, 93.4, 81.2, 66.9, 65.3, 63.1, 27.1, 26.1, 20.9, 20.7, 10.0, 9.3; IR (NaCl neat) v 1743, 1369, 1230, 1033 cm⁻¹; HRMS (ESI) m/z [M+Na]⁺ Calcd for C₁₅H₂₄O₆Na 323.1471, found 323.1462.
- 32. Cvclohex-2-envl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (**2h**): obtained as a mixture of two diastereomers; $[\alpha]_D^{24}$ +38.7 (*c* 0.5 CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.87–5.81 (m, 3H), 5.76 (m, 1H), 5.29 (d, J = 8.8 Hz, 1H), 5.19 (d, J = 17.4 Hz, 1H), 4.25–4.16 (m, 4H), 2.09 (s, 3H), 2.08 (s, 3H), 2.03 (m, 1H), 1.97–1.92 (m, 2H), 1.83–1.72 (m, 2H), 1.58 (m, 1H); ^{13}C NMR (125 MHz, CDCl₃) δ 170.8, 170.3, 131.5, 128.9, 128.7, 128.4, 128.3, 94.0, 72.7, 66.8, 65.4, 63.1, 30.1, 25.0, 20.9, 19.2; IR (NaCl neat) v 1743, 1371, 1230,

1033 cm $^{-1};$ HRMS (ESI) m/z [M+Na] * Calcd for $\rm C_{16}H_{22}O_6Na$ 323.1314, found 323.1310.

- 33. Cyclooctanyl 4,6-di-O-acetyl-2,3-dideoxy-α-*D*-erythro-hex-2-enopyranoside (**2**): [α]_D²⁴ +156.7 (*c* 1.0 CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.84 (d, *J* = 10.2 Hz, 1H), 5.78 (dt, *J* = 10.2, 2.3 Hz, 1H), 5.26 (dd, *J* = 9.6, 1.4 Hz, 1H), 5.11 (s, 1H), 4.21 (d, *J* = 12.1 Hz, 1H), 4.12 (m, 2H), 3.83 (hept, *J* = 4.2 Hz, 1H), 2.08 (s, 3H), 2.06 (s, 3H), 1.76 (m, 1H), 1.71-1.69 (m, 4H), 1.59-1.40 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.3, 128.65, 128.63, 92.8, 78.6, 66.8, 65.5, 63.2, 53.4, 33.0, 31.3, 27.3, 27.2, 25.2, 22.9, 20.9, 20.7; IR (NaCl neat) ν 1743, 1373, 1234, 1036 cm⁻¹; HRMS (ESI) *m*/z [M+Na]⁺ calcd for C₁₈H₂₈O₆Na 363.1784, found 363.1771.
- 34. 3-Phenylprop-2-ynyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2-enopyranoside (2m): $[\alpha]_D^{24}$ +196.0 (c 0.5 CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.32–7.28 (m, 3H), 5.93 (d, *J* = 17.5 Hz, 1H), 5.87 (d, *J* = 17.5 Hz, 1H), 5.33 (s, 2H), 4.53 (s, 2H), 4.26 (dd, *J* = 12.1, 5.1 Hz, 1H), 4.18 (dd, *J* = 12.1, 2.4 Hz, 1H), 4.14 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H); ¹³C NMR (125 MHZ, CDCl₃) δ 710.7, 170.2, 131.8, 129.6, 128.6, 128.3, 127.4, 122.3, 92.7, 86.5, 84.3, 67.2, 65.2, 62.8, 55.8, 51.4, 20.9, 20.7; IR (NaCl neat) ν 1743, 1371, 1234, 1037 cm⁻¹; HRMS (ESI) *m*/z [M+H]⁺ calcd for C₁₉H₂₁O₆ 345.1338, found 345.1339.
- 35. 2-Naphthyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (**2n**): $[\alpha]_D^{24}$ +151.5 (*c* 1.0 CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 7.77 (m, 1H), 7.76-7.66 (m, 2H), 7.48 (m, 1H), 7.46 (m, 1H), 7.10 (t, *J* = 8.9 Hz, 1H), 6.30 (m, 1H), 5.98 (dt, *J* = 10.2, 1.6 Hz, 1H), 5.96 (dt, *J* = 10.2, 1.6 Hz, 1H), 5.66 (ddd, *J* = 6.47, 2.83, 1.88 Hz, 1H), 4.36-4.34 (m, 2H), 4.08 (dt, *J* = 9.2, 3.0 Hz, 1H), 2.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.1, 154.0, 129.13,

129.10, 128.9, 127.0, 126.9, 124.6, 123.1, 120.8, 119.9, 112.8, 75.2, 64.2, 62.4, 21.0, 20.8; IR (NaCl neat) ν 1747, 1226, 1039 cm $^{-1}$; HRMS (ESI) m/z [M+Na]* calcd for $C_{20}H_{20}O_6$ Na 379.1158, found 379.1147.

- 36. (+)-Borneol 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (**20**): [α]₂²⁴ +72.6 (c 0.8 CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.84–5.79 (m, 2H), 5.27 (d, J = 9.8 Hz, 1H), 4.99 (s, 1H), 4.21 (dd, J = 12.2, 5.6 Hz, 1H), 4.12 (dd, J = 12.2, 2.2 Hz, 1H), 4.10–4.09 (m, 1H), 3.82 (dt, J = 6.6, 2.1 Hz, 1H), 2.42–2.22 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 1.96–1.90 (m, 1H), 1.70–1.64 (m, 2H), 1.59 (t, J = 4.5 Hz, 1H), 1.23–1.17 (m, 2H), 0.94–0.82 (s, 3H), 0.81(s, 3H), 0.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.2, 128.4, 128.2, 96.1, 85.8, 66.8, 66.7, 64.1, 48.8, 47.7, 46.6, 38.9, 28.2, 28.2, 26.6, 20.9, 20.7, 19.7, 13.6; IR (NaCl neat) v1747, 1369, 1230, 1041 cm⁻¹; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₀H₃₀O₆Na 389.1940, found 389.1938.
- 37. (5)-(-)-β-Citronellol 4,6-di-O-acetyl-2,3-dideoxy-α-*p*-erythro-hex-2-enopyranoside (**2p**): [α]_D²⁴ +41.5 (*c* 0.5 CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.86 (d, *J* = 10.4 Hz, 1H), 5.87 (d, *J* = 10.4 Hz, 1H), 5.29 (dd, *J* = 9.6, 1.1 Hz, 1H), 5.08 (t, *J* = 7.0 Hz, 1H), 5.01 (s, 1H), 4.23 (dd, *J* = 12.1, 5.4 Hz, 1H), 4.16 (dd, *J* = 12.1, 2.2 Hz, 1H), 4.10-4.07 (m, 1H), 3.82 (dd, *J* = 7.4, 2.2 Hz, 1H), 4.16 (dd, *J* = 12.1, 2.2 Hz, 1H), 2.07 (s, 3H), 1.99-1.93 (m, 2H), 1.67-1.65 (m, 4H), 1.59-1.55 (m, 4H), 1.41-1.30 (m, 2H), 1.17-1.12 (m, 1H), 0.88 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.3, 131.2, 128.9, 127.9, 124.7, 94.3, 67.0, 66.9, 65.3, 63.1, 37.2, 36.5, 29.4, 25.7, 25.4, 20.9, 20.8, 19.3, 17.6; IR (NaCl neat) ν 1743, 1371, 1232, 1035 cm⁻¹; HRMS (ESI) *m*/*z* [M+Na]⁺ calcd for C₂₀H₃₂O₆Na 391.2097, found 391.2089.